Introduction

- In a previous study on material matching (SPIE2015, JOV2016) we found material and light dependent perceptual interactions.
- Here we wanted to test material and light confounds and designed two tasks:
 - match optically mixed lighting modes for same and different materials
 - discriminate material differences and lighting differences (4AFC)
- Four materials (matte, velvety, specular, glittery) were used as basis images.
- The weights of three canonical lighting modes in the stimuli were selected from 15 observers.

Experiment 1: can people discount materials in matching optically mixed canonical lighting

- All 12 basis images were used for optical mixing
- 15 observers were asked to match the illumination of the robe (slider positions)
- The weighting of each lighting in the stimuli was selected from the table below:

<table>
<thead>
<tr>
<th></th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
<th>L5</th>
<th>L6</th>
<th>L7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient light</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>0.33</td>
</tr>
<tr>
<td>Focus light</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
<td>0.33</td>
</tr>
<tr>
<td>Brilliance light</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Analysis:
- The weights of the three canonical lighting modes in the probe (slider positions) and the weights of three canonical lighting modes in the stimulus images were fitted into a linear equation: P = X & S = R
- Solving the equation gives the linear factor matrix X and the Residuals.
- X is an Identity matrix if probing results are veridical, i.e. X = I when P = S.
- The ratio (r) between the sum of the diagonal values in X and the sum of X can be used to evaluate performance, ranging from 0 (unrealistic) to 1 (veridical), with 0.33 being the chance level.

Performance (r) per material combination

- Experiment 2: can people simultaneously discriminate material differences and lighting differences?
 - In each trial, observers were shown a pair of images and four options below the images: “same materials same lightings”, “same materials different lightings”, “different materials same lightings” and “different materials different lightings”.
 - All 78 possible pairs of 12 basis images were included.
 - The task was to ask the users to browse through all stimulus images in pseudorandom order to give them a brief idea about how different the images could be.
 - The numbers of trials were balanced with different numbers of repetitions for each setting to avoid biased results.
 - 8 inexperienced observers finished the task in around one hour.

Experiment 3: reduced version of Exp. 1 & 2

- We further tested another four inexperienced observers with a reduced version of both the matching experiment and the 4AFC experiment.
- Brilliance lighting mode was removed in the reduced version of experiments.
- We asked the observers in Experiment 3 to first finish the matching experiment and then after a short break finish the 4AFC task.
- We also found that in Experiment 2 and 3:
 - if materials are different, it is harder to match the optically mixed canonical lighting modes than when materials are the same.
 - Results from Experiment 1 showed that if materials are different, it is harder to match the optically mixed canonical lighting modes than when materials are the same.
 - which was confirmed in Experiment 2 and 3.
 - We also found that in Experiment 2 and 3:
 - if lightings are different, it is almost as easy to say whether the materials are different or not as when the lightings are the same.
 - Additionally, we found individual differences in both tasks.

Conclusions

Acknowledgements

This work has been funded by the EU FP7 Marie Curie Initial Training Networks (ITN) project PRISM, Perceptual Representation of Illumination, Shape and Material (PITN-GA-2012-316746).

References
