MatMix 1.0,
a novel material probe for quantitatively measuring visual perception of materials
Fan Zhang, Huib de Ridder, Sylvia Pont
Perceptual Intelligence Lab, Delft University of Technology

Introduction
- How can we measure the visual perception of material qualities quantitatively?
- In this study, we developed a material probe (MatMix 1.0) to tackle the above-mentioned question and tested the probe with human observers.

MatMix 1.0

Methods
- We tested the probe for stimuli consisting of 5 sets of optical mixtures, namely:
 - The original set (office light)
 - A set for a different viewpoint (quite direct light)
 - Systematical variation of the lighting on material appearance

Results
- The diagonal values in the matrices A represent the perceptual relations between each material in the office light (the probe) and one of the 5 scenes (the stimulus).
- The residuals in the matrices A represent how good the solved linear factor matrices fit into the linear equation. On average, the residuals were less than 0.1.

Examples
- Half velvety and half specular mixture in ambient light appears to match matte in office light.
- Half velvety and half specular mixture in focus light appears to match velvety in office light.

Examples
- Half velvety and half specular mixture in ambient light appears to match matte in office light.
- Half velvety and half specular mixture in focus light appears to match velvety in office light.

Examples
- Half velvety and half specular mixture in ambient light appears to match matte in office light.
- Half velvety and half specular mixture in focus light appears to match velvety in office light.

Conclusions
- Inexperienced observers are able to handle MatMix 1.0 well and match on the basis of perceived material qualities.
- Due to complex material-lighting interactions, perceived material qualities will depend on both lighting and materials.

Acknowledgements
This work has been funded by the EU FP7 Marie Curie Initial Training Networks (ITN) project PRISM, Perceptual Representation of Illumination, Shape and Material (PIITN- QA-2012-316746).